
Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 1

Project Möbius: A study on the feasibility of Learning by
Reading
Noah S
Friedland

The
Friedland
Group, Inc.

David Israel

SRI
International

Peter Clark

The Boeing
Company

Eduard
Hovy, Jerry
Hobbs, Rutu
Mulkar

ISI

Bruce
Porter, Ken
Barker

University
of Texas

Ralph
Weischedel,
Paul Martin

BBN
Technologies

Abstract
Much of human knowledge is expressed in documents. Our ability to express ideas in
written language and disseminate those ideas in documents has been key to many
endeavors, especially to the development of science and technology. With the dawn of
the information age and the Internet, the number of documents within easy reach has sky-
rocketed, yet, beyond the use of keyword search, we lack the ability to truly
automatically harness the power of this textual knowledge. Project Möbius was a two
year effort aimed at ascertaining the feasibility of a class of systems capable of
automatically extracting knowledge from documents and utilizing this knowledge, again
automatically, to expand existing knowledge bases. The approach used in the study was
to develop a demonstration system that, for the first time, integrated state-of-the-art
Knowledge Representation and Reasoning (KR&R) and Natural Language
Understanding (NLU) technologies in the automated extension of an existing knowledge
base. The year one effort targeted texts on the topic of the form and function of the
human heart. Automated knowledge acquisition was evaluated through the inspection of
the system’s knowledge base before and after processing a previously unseen text. Year
two transitioned to a far more rigorous evaluation – measuring the performance of the
system answering previously unseen questions before and after the reading of previously
unseen texts. The year two domain was also far more complex– the form and function of
engines. The year two system was able to answer a significant number of challenge
questions, achieving a score of 32.4% correct on an objective test upon which the system
had scored 0% before reading. This evaluation was followed by a detailed failure analysis
which helped the researchers to form a better and more fully quantitative understanding
of the challenges facing a future Learning by Reading (LbR) system. The conclusion of
our study is that Learning by Reading produced statistically significant improvements in
the problem solving abilities of the target knowledge, and that, with a major research
effort, substantial progress could be made in the general application of LbR.

Keywords: Learning by Reading, automatic knowledge acquisition from text

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 2

Introduction
The information age has seen an explosion in the number of documents now easily
available on everyone’s desktop. Search techniques have made this information more
accessible to human readers, but for machines, the vast amounts of linguistically encoded
knowledge on the Web are mostly opaque. Research in natural language understanding
(NLU) has primarily been focused on “text in; text out” approaches, such as
summarization and translation. Other efforts, for example those involved in MUC and
ACE, that have focused on “text in; formalized representation of knowledge out”, have
targeted information extraction against fairly simple pre-defined schemata, e.g. looking
for relationships between people, places and things. While there have also been a few NL
systems which generate logical forms from text, they have not addressed the task of
assembling those pieces together into a coherent knowledge base.

The Knowledge Representation and Reasoning (KR&R) community, on the other hand,
has dedicated its efforts towards human-driven knowledge formulation. The CYC project
produced a very large knowledge base, with millions of concepts and instances and
hundreds of thousands of rules/axioms. The University of Texas advocated a different
approach, focusing on hundreds of high level modules – mini theories – that could be
used compositionally to formulate more specific and domain dependent knowledge.
Formulating knowledge into such representational systems has been a significant
challenge – a problem known as the knowledge acquisition (KA) bottleneck. The RKF
program and Project Halo have been the latest major thrusts in this line of research.

Despite good progress over the last five years in KA techniques, getting humans to
formulate knowledge is still very expensive and the results, very brittle – especially when
faced with the construction of a sizeable KB. The expense is due to the painstaking effort
needed to create an effective KB – one capable of executing one or more tasks at a pre-
specified level of performance. Once constructed and tested, the KB is essentially frozen
and remains functional until either the knowledge in it is obsolete or the context it is used
in changes. Then, additional human labor is needed to maintain or revamp the knowledge.

Thus, the stage has been set for Learning by Reading (LbR). Automatically acquiring
knowledge from electronic documents could enable the fully automatic formulation of
large effective KBs. Solving the problem of automatically producing such KBs would, in
turn, open up a new frontier of knowledge exploitation algorithms, which would be both
robust and economical, and provide revolutionary new ways of querying and problem
solving against this knowledge.

Attacking this problem poses new challenges for the NLU and KR&R communities. The
former need to consider the challenge of aligning and guiding representations achievable
by automated extraction from text, with all its inherent ambiguity and logical gaps, to
representations that are usable by KR&R systems; while the latter should be considering
how to modify KR&R systems and approaches, which have historically been designed to
work with human-crafted knowledge, to work with large amounts of noisy logical form
derived automatically from text.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 3

The deep integration of KR&R and NLU techniques, suggested above, may have a
substantial impact on how each community might consider approaching this problem. For
example, the creation of logical form from text may be significantly impacted by the
availability of a large KB, which could provide the rich knowledge context that might
help constrain the ambiguities encountered during the extraction, and serve to guide
further extraction of knowledge. Conversely, the availability of a large amount of text-
derived logical form could potentially help vet portions of the initial KB.

The Notional Möbius Architecture
The Möbius project began as a thought exercise to formulate a feasible approach to
addressing the Learning by Reading challenge. The first phase of this effort focused on
the creation of a notional architecture to show how KR&R, Machine Learning (ML) and
NLU techniques could be brought together to perform LbR tasks.

Figure 1, below, depicts the notional Möbius architecture. The system is initialized with a
significant KB, which represents its prior knowledge. The KB provides a context in
which newly acquired concepts and relations can be integrated. The KB is used, along
with a learning directive, i.e. “Learn about X!”, to launch the acquisition loop. The
acquisition loop derives knowledge in response to the directive, by identifying texts that
may contain the desired knowledge, applying NLP techniques to extract logical form
from those texts, and integrating the extracted knowledge into the KB. The consolidation
loop operates on the incrementally assembled KB to verify that the knowledge being
constructed is coherent and can sustain the required set of tasks, e.g. question-answering
and problem solving, at some specified level of performance. The consolidation does this
by performing a set of knowledge driven tests, and examining the outcome.
Consolidation may result in new acquisition loop activities to either correct existing
knowledge or plug gaps identified in the knowledge collected to date.

Figure 1: The notional Möbius architecture

The system stabilizes when a certain level of performance is achieved on a given task set,
for a given corpus of documents. The addition of new documents or tasks may kick off a
new round of Acquisition/Consolidation until a new equilibrium is achieved. Note how
the notional architecture overcomes the brittleness issues of a static, human built KB. In

Test Generation &
Robust Reasoning

Tests

Introspection

Consolidation Loop

 Corpus

Finding more texts

Knowledge
Integration

Acquisition Loop

 [Initialization]

Knowledge
Extraction

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 4

contrast to the Möbius vision, human constructed KBs cannot self-adjust to handle new
data or tasks without significant additional knowledge engineering – making their upkeep
and maintenance time consuming and expensive.

Year 1: Showing that a KB can be augmented from text
The notional architecture provided a framework of how an LbR system might function.
The next task was to determine the feasibility of this notional approach. A 9 month proof
of concept was launched. It called for a demonstration system to be rapidly assembled by
a small team of researchers and engineers. The first challenge was to decide, given the
limitations of time and scope, what the focus of the proof of concept demonstration
should be, and what metrics should be used in the evaluation.

The year 1 team, which consisted of the Friedland Group as project management, SRI
International as integrator, University of Texas at Austin (for KR&R) and USC ISI (for
NLU), decided to focus on a component of the acquisition loop – namely the process by
which text was processed to create logical form, and showing how that logical form could
be inserted into an existing KB. To further restrict the scope the problem, a small domain
was selected: the form and function of the human heart. The evaluation would include
processing one or more previously unseen texts, and then inspecting the knowledge
hierarchy to see that the logical form had been correctly produced from the text and
inserted into the KB.

Year 1 Architecture
The system architecture is depicted in Figure 2. A text is loaded into the system. The ISI
technology is depicted by the three boxes, labeled “Parser”, “L(ogical) Form” and “NL
Triples” on the lower left hand side of the figure. The UT technology, depicted by the
boxes “KR Triples”, “Integrate” and “Knowledge Repository”, appear on the lower right
hand side of the figure. The repository itself consists of two elements. The first is the UT
Component Library (CLIB), a collection of several hundred logical models, each
representing a basic, high-level concept, like the event “Move”, the role “Fuel” or the
entity “Device”. These components constitute the system’s prior knowledge. The second
element in the repository is the collection of text-derived models, which represent a
domain-specific extension of components in the CLIB, for example, a human heart is a
type of “Internal Organ”.

At the beginning of processing, the text undergoes parsing, using the ISI CONTEXT
parser. The parse tree is then processed to extract logical form. The final step takes the
logical form and formulates “NL triples” in the form <word relation-term word>. The
lexical NL triples are converted into conceptual KR triples of the form <concept relation
concept> and then placed, by the “Integrate” module, into the new models area in the
knowledge repository for manual inspection.

Newly acquired knowledge can take the form of concepts or axioms. Concepts, e.g. Heart
– an “Internal Organ”, Blood – a “Liquid Substance”, etc. may be either newly learned,
i.e. a new concept that did not exist prior to reading the given passage, or it may represent
a domain specific specialization of an already existing CLIB component. New concepts,

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 5

like those in the example above, are attributed (as children) to one or more CLIB
components, effectively inheriting the parents’ attributes. This illustrates the power of
having a large KB available during learning, as these children potentially can inherit a
significant amount of knowledge from their parents that may not otherwise have been
explicitly stated in the text. For example, knowing that Blood is a Liquid Substance
allows the system to infer that Blood has liquid properties, like the ability to flow, or be
the subject of pumping.

Axioms describe relations between concepts. Take, as an example, the sentence “The
heart pumps blood.” There are two concepts, Heart and Blood, and one action/event,
Pump. This sentence could produce the following two axioms: <Heart agent-of
Pumping> and <Blood object-of Pumping>. Thus, instances of Heart and Blood are
connected logically via an instance of a Pumping event.

Domain models are graphs assembled from combinations of new or specialized concept
instances, linked together by axioms. Models can be as small as a single KR triple, and
potentially contain hundreds of concepts derived from multiple texts. For example, a
domain model of a human heart may indicate that the heart has four chambers, and is
attached to the human body’s vascular system by veins and arteries. Models can vary in
their level of detail, depending upon how detailed the originating texts are. Ultimately,
the level of detail in the domain models should be sufficient to support question
answering or problem solving tasks at a pre-specified level of performance.

Figure 2: Year 1 System Architecture

Figure 3 depicts an example of how the NL processes text into NL triples. The pipeline
begins with a parse produced by ISI’s CONTEX parser. Next, the parse tree is converted
into Hobbs Normal Form (HNF), which is then converted into NL triples. A significant
number of rules were required in the LF Toolkit module to handle the diversity of forms
that parse trees could produce. In many cases rules were either malformed or missing,
which resulted in missing connections (triples) between a verb and one or more of its

 Controller

Visualization
Upload

Parser L Form NL Triples KR Triples Integrate

Text

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 6

arguments. We call these attachment problems “representational fragmentation”.
Fragmentation manifested in NL triples that lacked a specific target term. Take the
sentence “The heart pumps blood.” described above. Representational fragmentation
might result in an inability to properly attach concepts in these triples, producing: <pump
agent entity/thing>, <pump object entity/thing>.

Figure 3: NL triple formulation

The next challenge involved word sense disambiguation (WSD), i.e., the mapping from
lexical terms in NL triples to conceptual terms in KR triples. To do this, we followed the
simple process depicted in Figure 4. As part of the prior process of constructing the CLIB,
each concept is tagged with the WordNet synset(s) it corresponds to. Given a term to
disambiguate, here “pump”, Mobius reduces it to its root form and then sees if directly
matches a CLIB concept, i.e., is a member of one of the synsets attached to the concept.
If concepts are found they are set aside as potential matches. If no concepts are found, the
algorithm “climbs” the Wordnet2.0 hypernym structure until all matches are found. A
heuristic is then left to pick a best match from all the candidates, factoring in the
considerations, like the generality of the word sense and of the candidate conceptual
match, or the distance traveled in the Wordnet2.0 hypernym hierarchy. It is this
mechanism that allows the placement of both new and specialized concepts derived from
text. This example again demonstrates how critical it is to have a significant existing KB
to be able to facilitate the correct capture of text-derived concepts, as well as a good
mechanism for mapping its conceptual hierarchy into lexical terms.

[1] The heart is a pump that works together with
the lungs [S-SNT]
 (SUBJ) [2] <The heart>1 [S-NP]
 (DET) [3] The [S-DEF-ART]
 (PRED) [4] heart [S-COUNT-NOUN]
 (PRED) [5] is [S-AUX]
 (COMPL) [6] a pump that works together with
the lungs [S-REL-CLAUSE]
 (MOD) [7] a pump [S-NP]
 (DET) [8] a [S-INDEF-ART]
 (PRED) [9] pump [S-NOUN]
 (SUBJ) [10] that [S-INTERR-NP]
 (PRED) [11] that [S-INTERR-PRON]
 (PRED) [12] works [S-INTR-VERB]
 (DIR) [13] together with the lungs [S-PP]
 (P) [14] together with [S-PREP]
 (LEXICAL-1) [15] together [S-ADV]
 (LEXICAL-2) [16] with [S-PREP]
 (PRED) [17] the lungs [S-NP]
 (DET) [18] the [S-DEF-ART]
 (PRED) [19] lungs [S-COUNT-NOUN]

Parse

 is(e0,x0,x1)
 heart-nn(x0)
 pump-nn(x1)
 work-vb(e1)
 lung-nn(x3)

LF
x0-heart
 is x1-pump
 instance-of heart
x1-pump
 agent-of e1-work
 instance-of pump
e1-work
 instance-of work
 together-with x3-lung
…]

NL Triples

“The heart is a pump that works
 together with the lungs”

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 7

Figure 4: Aligning CLib with Wordnet 2.0 for lexical to conceptual mapping

Year 1 Results
Table 1 depicts example output from the Year 1 system. The texts used in the analysis
were provided by a third party at the time of the live demonstration – so the team did not
have access or prior knowledge of the text before the proof of concept exercise. Texts
were gleaned, by the third party, from readily available Web resources. The left hand
column depicts the sentences, numbered sequentially, in the passage being processed.
Below each sentence is a bulleted list of all the concepts identified for that sentence. The
concepts could be either new concepts defined by the system, or previously existing
concepts that were modified by the system. The right hand column depicts the learned
axioms, listed under their associated concepts. Concepts are listed alphabetically.
Concepts highlighted in red were newly learned from the text, while other concepts were
specialized from concepts already known to the system. The parent concept appears in
parentheses, e.g. Blood (Liquid-Substance); in other words, Blood is a kind of Liquid-
Substance. Each learned axiom includes its provenance, i.e. the sentence it originated
from, in square brackets to its right. The top of the Right hand column provides a
summary of the number of newly learned concepts, the number of unique, non-isa axioms
learned and the average number of axioms learned per sentence. Is-a axioms generally
result in new concept definitions and are, thus, handled separately.

For example, the axiom (KR triple) <Blood agent-of Enter> was learned from sentence 3:
“Blood enters the heart through two input tubes.”, and <Blood agent-of Exit> was learned
from sentence 5: “Blood exits the heart through tubes called arteries.” We learn that
<Blood is-inside Body> and <Blood object-of Flow> from sentence 2: “The heart
circulates blood through the body.”

Note that there are plenty of errors in this example as well. Artery is mislabeled as a type
of Heart. Note the number of axioms describing Entity, Event and Thing, which indicate
representational fragmentation. There are also axiomatic errors, like <Heart is-inside
Tube> from sentence 5: “Blood exits the heart through tubes called arteries.” There are
also plenty of missing axioms, like <Tube path-of Enter> from sentence 3. The system
also failed to recover the fact that there were two input tubes. Many of these failures were
due to the limitations of the year 1 system in recovering details from the sentences,
primarily due to errors in the formulation of logical form.

CLib
WordNet 2.0

“pump”

Pump-Device
(preferred concept
based on frequency
statistics)

Lexical Term Concept

Shoe

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 8

Table 1: Example of Year 1 Results

Learned or Specialized Concepts by Sentence Learned Axioms
1. A heart is an internal organ

• Heart: A heart is an internal-organ.

2. The heart circulates blood through the body

• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

3. Blood enters the heart through two input tubes

• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

4. The input tubes are called veins

• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

5. The blood exits the heart through tubes called arteries

• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

6. The heart consists of two lower chambers and two upper chambers

• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

7. The veins are connected into the upper chambers

• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

8. The arteries are connected to the lower chambers

• Artery: An artery is a heart.

Concepts learned: 8
Unique, non-isa axioms learned: 72
Average unique learned axioms per
sentence: 5.5

Artery (Heart)
 agent-of Event [13]

Blood (Liquid-Substance)
 agent-of Enter [3]
 agent-of Exit [5]
 agent-of Move [11]
 is-inside Body [2]
 object-of Event [13]
 object-of Flow [2]
 object-of Pumping [11]

Body
 destination-of Event [11]
 encloses Blood [2]

Chamber
 agent-of Contract [13]
 agent-of Move [12]
 destination-of Event [12]
 is-part-of Heart [6]
 object-of Event [12]
 origin-of Event [12]
 position (*low) [13]
 position (*upper) [12]

Contract
 agent Chamber [13]
 agent Entity [13]

Deliver
 agent Entity [11]
 object Oxygen [11]

Device
 has-part Entity [13]

Enter
 agent Blood [3]
 object Heart [3]

Entity
 agent-of Contract [13]
 agent-of Deliver [11]
 agent-of Event [11]
 agent-of Exit [5]
 agent-of Move [12]
 is-part-of Device [13]
 object-of Exit [5]
 object-of Move [12]

Event
 agent Artery [13]
 agent Entity [11]
 destination Body [11]
 destination Chamber [12]
 destination Heart [11]
 destination Lung [9]
 object Blood [13]

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 9

• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

9. One of the lower chambers pumps blood into the lungs

• Pump: A pump is a pumping-device.
• Lung: A lung is an internal-organ.
• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

10. The blood is enriched with oxygen in the lungs

• Oxygen: Oxygen is gas-substance.
• Pump: A pump is a pumping-device.
• Lung: A lung is an internal-organ.
• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

11. The enriched blood returns to the heart and is then pumped to
deliver the oxygen to the entire body

• Oxygen: Oxygen is gas-substance.
• Pump: A pump is a pumping-device.
• Lung: A lung is an internal-organ.
• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

12. When the chambers compress, blood is forced from the upper
chambers to the lower chambers

• Oxygen: Oxygen is gas-substance.
• Pump: A pump is a pumping-device.
• Lung: A lung is an internal-organ.
• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

13. When the lower chambers contract, they force the blood into the
arteries

• Oxygen: Oxygen is gas-substance.

 object Chamber [12]
 object Oxygen [10]
 origin Chamber [12]

Exit
 agent Blood [5]
 agent Entity [5]
 object Entity [5]

Flow
 agent Heart [2]
 object Blood [2]

Heart (Internal-Organ)
 agent-of Event [1]
 agent-of Flow [2]
 agent-of Pumping [11]
 destination-of Event [11]
 has-part Chamber [6]
 has-part Tissue [1]
 is-inside Tube [5]
 is-part-of Body [1]
 is-part-of Multicellular-Organism [1]
 object-of Enter [3]
 object-of Move [11]

Lung (Internal-Organ)
 destination-of Event [9]

Move
 agent Blood [11]
 agent Chamber [12]
 agent Entity [12]
 object Entity [12]
 object Heart [11]

Oxygen (Gas-Substance)
 object-of Deliver [11]
 object-of Event [10]

Pump (Pumping-Device)

Pumping
 agent Heart [11]
 object Blood [11]

Spatial-Entity
 path-of Thing [3]

Thing
 position (*upper) [6]

Tube (Body-Part)
 encloses Heart [5]

Vein (Entity)

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 10

• Pump: A pump is a pumping-device.
• Lung: A lung is an internal-organ.
• Artery: An artery is a heart.
• Vein: A vein is an entity.
• Tube: A tube is a body-part.
• Blood: Blood is liquid-substance.
• Heart: A heart is an internal-organ.

Year 1 Summary
The Year 1 system demonstrated qualitatively that a software system could extract logical
forms from a small collection of previously unseen texts on the form and function of the
human heart. The system accumulated that knowledge in an archive that would allow,
under fairly significant assumptions, the cross-sentential aggregation of that knowledge.
Although the system was able to produce some logical form correctly, it also failed to
extract substantial amounts of logical form from these texts. Since the live study did not
afford the possibility of doing a detailed failure analysis, we could only speculate on the
reasons why the system failed to produce logical form – widespread fragmentation of the
derived logical form, due, in part, to verb participant attachment problems. It was also
unclear, from a quantitative standpoint, what impact the acquired knowledge had on the
performance of the KB.

Year 2: A Quantitative Proof of Concept
The focus of Year 2 was to create quantitative, scientifically rigorous evidence that a
system could learn by reading text, by examining the impact of the learned knowledge on
an objective test of the KB. A second goal was to perform a rigorous failure analysis to
use the demo system to better understand the larger technological challenges facing LbR.
The core task in the evaluation was using the KB to answer comprehension-style
questions. Assume that a third party produced one or more previously unseen texts on
one or more topics, and a set of questions, with gold standard answers, to go along with
those texts. A system could demonstrate its ability to learn by reading if it were able to do
significantly better on answering the questions after reading the text than it could before
those texts were read.

Again, the Möbius team needed to decide, given limited time and resources, and in light
of the given challenge, where to put the emphasis of the development effort. Four critical
areas were identified:

1. Strengthening the NL pipeline – creating a more robust mechanism for
formulating NL triples and converting them into KR triples.

2. Adding a question-answering mechanism to facilitate the evaluation.
3. Improving the ways in which knowledge extracted from text is integrated into an

already existing knowledge base.
4. Targeted Reading. The notional Mobius architecture called for a mechanism that

would allow the system to identify new texts which might contribute to
knowledge formulation.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 11

Given the ambitious nature of the Year 2 effort, the Möbius team was augmented by two
new team members: Boeing Phantom Works joined to assist in development of a
question-answering capability and in the overall evaluation of the system, and BBN
Technologies came on board to assist in strengthening the NL pipeline and assisting in
experimentation on Targeted Reading.

The Y2 effort also took on a new, more complex domain – the form and function of
engines. There are dozens of engine types, ranging from internal combustion, to gas
turbine, jet and electric engines – each with a variety of possible uses and diverse internal
functionality. The scope of the effort was oriented towards components and their roles,
and less towards more advanced capabilities, such as sequences of events or diagnostics.

Year 2 Architecture
The Y2 architecture is depicted in Figure 5. The main thrust components appear in
shaded areas. The NL pipeline is on the right hand side, question-answering is the region
in the center of the figure, directly above the targeted reading (TR) module, on the lower
portion of the figure. Knowledge integration (KI) is the region on the left hand side of the
figure.

During learning by reading, a document enters the controller (center top of Figure 5) and
is broken into its constituent sentences. Next, the sentences are fed through the NL
pipeline, producing logical form, NL triples and finally, KR triples. KR triples are then
sent to the KI module and used to build up dynamic domain models. The KR triples are
also sent to a Triple Store to be used for problem solving.

The TR system is intended to provide an additional source of logical form. In many
instances, the logical form that can be extracted from a given text can be incomplete. This
is often due to failures in the formulation process, because the original English was
unclear or ambiguous, or because the author, writing for a human audience, omitted
important details that a machine reader could not infer. The idea behind TR is to utilize
the redundancy in a large corpus, like the Web, to build, offline, a repository of logical
form, i.e. “graph fragments”, and then to use these structures to “fill in gaps” in the
current text. When the TR system is engaged, the semantic elaboration module at the end
of the NL pipeline calls on the TR index to find fragments of logical form created from a
corpus consisting of 200-500 text passages, to help in the correct formulation of KR
triples.

During question answering, the system receives a question formulated in CPL. The
question is passed into the Q-A module, where it is converted into logical form, much
like a read sentence is. Then the logical form is used to match sentence-based KR triples
in the Triple Store. The possible matches are then used to derive possible answers, which
are, in turn, sent back to the controller.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 12

Controller

LF
Toolkit

Mini
Tacitus

Semantic
Elaboration

Charniak/SERIF
Parser

NL
Triples

Text

Q & A

Text

KR
TriplesKnowledge

Integration

TR
Triples

TR
Triples

ExitRunPause

1 C:\Mobius\Text\Text1.txt

1.3 In most cases the work is suppli ed by exerti ng a torque, which is used
to operate other machi ner y, generate electricity, etc.

File Edit Opti ons

Q1. What are the parts of an engi ne?
A1. An engi ne has parts shaft.

edi t
details

Read Initial KnowledgeLearned KnowledgeTask Log

Add Text Ask Question

X

1

Status : Paused. 14 axi oms, 4 refi ned concepts, 13 new concepts Details

Targeted Readi ng: C:\Mobi us\Text\Text4.txt
- reading about steam engine

2.1 A steam engine [eng ine]is an external combustion heat
engine that makes use of the heat energ y that exists in
steam, converti ng [convert]i t to mechanical work.

2.2 Steam eng ines [engi ne]were used as the prime mover i n
pumpi ng [pump]stati ons [stati on], locomotives [locomoti ve],
steam shi ps [shi p], traction [traction]engi nes, steam lorries
[lorry] and other road [road]vehicl es [device].

Status : completed. 4 axioms, 3 refi ned concepts, 7 new concepts Details

3

7
Doubl e cl ic k
to open
sentenc e i n
pop-up

Question
Interpretation

Answer
Generation

CPL Parse
Tree

Logical
Form

TR
Triples

Figure 5: Y2 Möbius Architecture

The NL Pipeline
Figure 6 depicts the details of the NL pipeline. The modules appear as rectangular
elements and the rule base for those components appear as ovals. The components are
color coded to reflect their degree of generality. Three significant improvements are
evident:

1. The pipeline is utilizing two state-of-the-art statistical parsers – the Charniak
parser from Brown University and BBN’s SERIF parser. Both are trained against
the Penn Treebank marked parses of WSJ text. BBN added 38 trees from the
engine domain (less than 1%) to this training set, to address domain specific
issues, like compound nouns – e.g. “spark plug”.

2. Parse tree binarization: Transformation of the parse trees (augmented with 306K
dictionary rules) into binary form greatly reduced the number of rules required to
map trees to logical form. This step virtually eliminated the participant verb
attachment problems experienced in Year1.

3. A new triples generator, the final step before passing the NL triples to the KR
component, dramatically reduced the number of errors in the NL triples.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 13

Serif
parser

Charniak
parser

LF Toolkit

Mini-Tacitus

Triples generator

Tree
transformer

text

raw Logical
Form

parse trees

Lists of triples

Map Serif
trees

Map Charniak
trees

XML parse trees

dictionary

TreeTrans rules

proposition rules

axioms

To KR

binarized
lexicalized XML

parse trees

node maps

Logical Form
with

assumptions

trained rules

< 1% domain

< 1% domain

0% jargon

General for human language

Physics or engineering

General for English

Specific to Möbius ontology

463

295

13

5K WSJ trees

306K

80K
192

38 trees
0

Figure 6: The NL pipeline

The Question-Answering Algorithm
The question-answering algorithm is depicted in Figure 7. The algorithm is intended to
maximize the recall from the system’s knowledge, at the cost of lower precision. The
process involves the following steps:

1. The original question is manually rewritten in a simplified form of English called
CPL (Computer-Processable Language), for ease of processing (we treated
understanding of the full English questions as out of scope, as it was not our
primary project focus).

2. The CPL is automatically interpreted to generate a set of triples representing the
question. This triple set, like the triples produced by Möbius when reading, can be
thought of visually as a graph of concepts (nodes) and relations (arcs). Initially the
CPL interpreter assigns word senses based on the original CLib ontology.
Subsequently, the word senses may be refined to more specific concepts learned
by Möbius during reading, if there is lexical evidence to do so. In the example in
Figure 7, the word “dampening” is initially mapped to “Activity”, but is revised to
the more specific “Restrain”.

3. The question graph is used to search the Triple Store for similar graph structures.
In this case, a good match was found in text6 sentence 23.

4. The question graph, including the variable node denoting the answer to the
question, is unified with the graphs in the Triple Store found in the search process,
and hence the answer is found.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 14

It is conceivable that many graphs in the Triple Store might match the question graph,
which may result in multiple answers. The potential for bad matches increases when the
answer is not in the learned knowledge (either because the answer was not stated in the
original text or Möbius failed to understand the appropriate part of the original text).
When that happens, matches might be much more general. Say the concept “Muffler”
was not found in the learned knowledge, the next, more general correspondence the Q-A
engine might have used would have been “Device”. The general term Device may have
resulted in many, many potential hits in the learned knowledge – sometimes producing
hundreds of spurious responses.

1. English: “What does the muffler dampen?”
2. CPL: “What is the object of a dampening by the muffler?”
3. Produce question graph and refine it

Dampening1

Muffler2 ?

agent object

Activity

Muffler

Dampening1

Muffler2 ?

agent object

Restrain

Muffler

4. sentence 23 in Demo B text 6 is a close match:
“The engine's muffler dampens the sound of the explosions in the combustion
chambers.”

?

Question Graph

Dampen234

Muffler225 Sound246
agent object

Restrain

Muffler Sound

Engine123

has‐part

Engine

→(Dampen object Sound)
Figure 7: An example depicting how the Q-A algorithm works

Knowledge Integration
The purpose of the Knowledge Integration (KI) module in the Mobius system is to stitch
together the information that is acquired during reading, and to relate it to the background
knowledge in the initial knowledge base. The KI module’s performance can be evaluated
by looking at the coherence of the knowledge that Mobius learns. It should be tightly knit
together into a coherent whole, not a collection of loosely connected “islands” of
knowledge. We will use a metric, called relatedness, to measure KI’s contribution:

∑

∑

+

+
= n

n

GieGin

GieGin
srelatednes

1

1

)()(

)(')('

where

Gi input representations
n(G) The number of total nodes in G
e(G) The number of total nodes in G
n’(G) The number of total nodes in G related with other representations by KI

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 15

e’(G) The number of total nodes in G related with other representations by KI

There are numerous challenges in automating knowledge integration. In Year 2 we have
focused on two of them: 1) resolving granularity differences among fragments of
knowledge, e.g. one passage may say something like “the engine drives the car”, while
another would go into minute detail about the engine, its components and their function,
and 2) incorporating background knowledge into a learned representation.

Resolving granularity differences
One of the primary challenges in knowledge integration is resolving granularity
differences among fragments of information. Consider, for example, this pair of
sentences:

S1: An engine converts fuel into motion.
S2: An air-gas mixture combusts in the cylinder, which drives the piston, turns the
crankshaft, and moves the vehicle.

S1 is a typical topic sentence – it provides an overview. S2 elaborates the topic sentence
by providing additional details. The reader’s job, which the KI module attempts to
automate, is to find the connections between S1 and S2 that make these sentences
coherent. This requires resolving the granularity difference: S1 is relatively coarse
grained, and S2 is relatively fine grained.

To automate this process, we need to understand the ways in which granularity
differences can arise in text, and the ways in which they can be resolved. We selected
about 35 general texts and manually performed knowledge integration on the sentences of
the texts to identify common granularity mismatches. This analysis revealed four major
types of granularity differences, and we developed graph alignment methods that resolve
each type.

Incorporating background knowledge
The Möbius system starts with a small amount of background knowledge about Engines,
consisting of these concepts: Chamber, Chemical-Entity, Combust, Cycle, Expand, Flow,
Protect, Valve, and (a very skeletal version of) Engine. Integrating this initial knowledge
with knowledge learned by reading can improve the coherence of the resulting
knowledge base.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 16

Knowledge Integration – incrementally adding knowledge into
a growing worldview

KB
(Static)

combustion

reaction

conversion

Models

engine conversionagent

fuel movement
raw material result

“An engine has several cylinders.”
Text1

engine cylinderhas-part

count

several

“The air-gas mixture combusts in
the cylinder.”

Text2

combustion

cylinder

air-gas mixture
raw material

location

KB

Integrate First Text

engine conversionagent

fuel movement
raw material result

engine cylinderhas-part

count

several

engine conversionagent

fuel movement
raw material result

cylinderhas-part

count

several

T1:

+

Models The engine in the text is matched
to engine in the model.

Model:

Integrate Second Text

combustion

cylinder

air-gas mixture
raw material

location

engine combustionagent

movement
raw material result

cylinderhas-part

count

several

air-gas mixture
location

T2:

KB
(Static)

Engines combust an air-gas mixture to
create movement. This is not explicit in
the text!

CLIB matches conversion
and combustion, fuel and air-
gas mixture.

engine conversionagent

fuel movement
raw material result

cylinderhas-part

count

several

+

Model:

Figure 8: A graphical depiction of the KI process

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 17

Targeted Reading
Learning by Reading (LbR) is an attempt to formulate inferentially correct logical
structures directly from text. This requirement is often at odds with the formats used by
human authors. For example, consider the following text:

“A gasoline engine is a type of internal combustion engine. The piston moves inside the
cylinder, causing the crankshaft to rotate.”

It is clear to human readers that the terms “piston”, “cylinder” and “crankshaft” all refer
to components of the gasoline engine. A simplistic machine reader would require the
author to explicitly call out these relationships, i.e. <engine has-part piston>, <engine
has-part cylinder>, <engine has-part crankshaft>, to be able to make the necessary
connections in the underlying logical model. This is just one example of the types of gaps
and limitations human authored texts might contain that impede in-depth model
construction from a single text. In other cases, important sentences might be so complex
or ambiguous that the system may fail to recover key logical elements. The solution to
these problems lies in the ability of the system to access other knowledge sources – be
those background knowledge, or additional texts. This latter case is what we mean by
“Targeted Reading”.

The initial attempt at Targeted Reading (TR) tried to perform the following sequence:

1. Identify a potential gap in the model
2. Create a query from keywords and synthesized clauses
3. Use keyword search to find passages relevant to the query, and rank them
4. Produce logical forms from the top ranking passages
5. Attempt to use the logical form produced to fill in the gaps in the current

model

This approach had several shortcomings:

1. It was difficult to produce the “right” queries for the text-based search
2. The search results had extremely low recall and precision
3. Run-time production of logical forms from the top ranking passages was slow

Together, the overall problem with this approach was that Mobius makes “two transitions
through the lexical-conceptual boundary”, i.e., from concepts, to words, to concepts again,
each transition being error-prone. The first pass went from requirements derived from
observed gaps in the knowledge model, to a set of words to be matched. The second pass
was interpreting the candidate passages from lexical to conceptual representation. Each of
these passes involved great computational expense and introduced significant
inaccuracies into the results. Once these limitations were clearly understood, another
approach to TR was attempted. Pre-extracting logical form from a large corpus of
documents into a repository would enable high-speed, accurate and complex querying.
Thus, an offline variant of the usual Möbius process was run over a large number of texts.
Each text was automatically converted into logical forms. These forms were placed in a
high-speed, indexed database that would facilitate quick recall. Since the index was

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 18

represented in concept space, high precision queries could be formulated. As a result, the
index could support hundreds of such queries a second.

Targeted Reading

KR

TR helps in all challenge
areas
Uses an offline index
TR supports these query
types:

Extract
Knowledge

Engine
Corpus

Texts

KR Triples

Requests/
Responses

Online TR: Handling KR Requests

Offline TR: Building up the IndexType Requests Responses
xqy (piston ?

engine)
(piston has-
part engine)

xrq (engine
has-part ?)

(engine has-
part piston)
(engine has-
part cylinder)
…

Figure 9: Targeted Reading

The logical elements captured in the index consisted of one or more KR triples. The
index consisted of a single relational database table. SQL queries were derived from two
main query types:

1. XqY, e.g. provide all graphs that contain a path between the concept “Engine”
and the concept “Piston”, subject to constraints. Such a path may be a direct link
(axiom) or a sequence of such links.

2. WRq, e.g. provide all graphs that contain a relation of the pattern “Engine has-
part ?”, subject to constraints.

Year 2 Results
The goal of the Year 2 effort was to produce quantitative evidence of the feasibility of
LbR, as measured by an objective test on the KB. In contrast to text-driven techniques
(see sidebar), used in TREC and other question-answering challenges, the question-
answering used in Möbius, employed pure KB techniques, operating upon KR triples in
the Triple Store. So, although some of the questions asked may appear to be TREC-like,
correct answer derivation in this case was an indication that the entire knowledge
acquisition and integration process (and Q-A) worked perfectly end-to-end.

A second goal was to perform a comprehensive failure analysis, which might suggest
potential avenues of LbR research. To this end, two demonstrations were produced.
Demo A, in mid October of 2007, and demo B, in early March 2008. Both demos used
question answering as a metric and followed the protocol specified in Figure 10, below.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 19

Word
Word

5. CPL Questions

6. Keywords from
Gold Answers

7. Create Jeopardy files

Word
Word

CPL

CPL

Word

Word
Simple

Lorem ipsum
dolor sit amet,
consectetuer
adipiscing elit.
In nisl.

1. Find Text

2. Simplify Text

3. Create Questions

4. Create Gold Answers

Simple
Lorem ipsum
dolor sit amet,
consectetuer
adipiscing elit.
In nisl.

Text

Text Simple
Lorem ipsum
dolor sit amet,
consectetuer
adipiscing elit.
In nisl.

8. Approve Jeopardy files

9. Process Jeopardy files – get raw scores

10. Manually adjust scores

136/321

104/321

Möbius
Protocol:

Figure 10: The evaluation protocol for Year 2 Möbius – both demos.

The demonstration protocol involved the following steps:

1. A third party developed a set of texts, questions, and gold standard answers.
These texts were simplified by the third party to remove anaphora, negation,
most conjunction/disjunction statements (“and”/”or”) and break up complex
sentences – phenomenology that the Möbius Year 2 demonstration system was
not equipped to address for a variety of technical reasons, but might be addressed
in future work.

2. The Möbius team received this material and produced “Jeopardy” files – files
used by the Möbius system to perform batch-oriented learning by reading and
question answering. The most labor intensive part of the Jeopardy file creation
was rewriting the original English questions in CPL simplified English.

3. The third party inspected the Jeopardy files to verify their correctness.
4. The Möbius team submitted the files to the system which performed the

experiment and auto-graded the results. Auto-grading was performed by
comparing the system output to keywords derived from the gold standard
answers, Mobius scoring 1 point for each gold keyword included in its answer.

5. Manual verification of the auto-grading to make sure that spurious outputs were
not counted as correct, in particular canceling points awarded when a keyword
had been correctly found, but the answer triple containing it was incorrect or
nonsensical. This manual verification process was essential to correct for the
obvious approximate nature of keyword-style scoring.

Table 2: Demo Results Summary (No TR)

 Demo A Demo B Comments

End-to-end
Q-A

21.5/138 = 15.6% 104/321 = 32.4%

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 20

Points lost
from Q-A

unknown 55; upper bound
on score: 159/321
= 49.5%

Lower bound, Q-
A system recall:
104/159 = 65.4%

Data 3 topics, 122
sentences, 57
questions, total gold
score 138

1 topic, 166
sentences, 127
questions, total
gold score 321

Table 2 provides a summary of the results obtained in the two demos. Demo A consisted
of a total of 122 sentences on three engine topics: pulse detonation engines, 2-stroke
engines and Steam Turbine engines. A total of 57 questions, worth a total of 138 points (1
point per answer keyword) , were submitted to the system in demo A. Demo B consisted
of 166 sentences on one topic – the 4-stroke engine – with a total of 127 questions worth
a total of 321 points. The demo A system scored 21.5 points out of a possible 138 for an
overall score of 15.6%, while the demo system scored 104 points out of a total of 321, for
a score of 32.4%. An analysis was made of the points lost due to poor performance of the
question-answering mechanism. In demo B, up to 55 points were lost due to question-
answering issues, like bad CPL encodings, problems with gold keywords, and failure of
the system to produce the correct answer, despite the existence of the required triples in
the Triple Store. For more, see results depicted in Figure 16. A system with “perfect”
question-answering capability might have scored up to 159 points correct, or a score of
49.5%. Q-A recall therefore had a lower bound of 65.4%.

Figure 11 depicts example text and questions from the demo B evaluation. Note that the
answers produced are in an Anglicized logical form, and that the forms appear in pairs,
reflecting the associated axioms and their inverses.

“Sump” - Example Text and Questions

Text6: … “The sump surrounds the crankshaft. The sump contains oil
which collects in the bottom of the sump. The oil pan is at the bottom
of the sump.” …

Text Simple
Lorem ipsum dolor
sit amet,
consectetuer
adipiscing elit. In
nisl.

Questions + Gold Answers:
SUMP-1. What does the sump surround? Crankshaft.
SUMP-2. What does the sump contain? Oil.

CPL and System Answers:
SUMP-1: What is the object of a surrounding by the sump?

be-contained/surround :: object = CRANKSHAFT.[1.145]
CRANKSHAFT :: object-of = be-contained/surround(tangible-entity,
CRANKSHAFT).[1.145]

SUMP-2: The sump is the agent of a containing. What is the object of the containing?
be-contained/contain :: object = OIL.[1.146]
OIL :: object-of = be-contained/contain(tangible-entity, OIL).[1.146]

Figure 11: Example texts, questions, and system answers.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 21

Figure 12 depicts the end-to-end question-answering results of the demo B system on the
demo B data. The 166 sentences were divided into 6 separate texts. The system learned
the texts one-by-one and asked all 127 questions between each text learned. The initial
score on the questions before reading was 0% - so the system was unable to answer any
of the questions. Note that the score gradually increased the more texts were learned,
ultimately producing a score of 32.4% after learning the final text.

End-to-End System Performance

0
5

10
15
20
25
30
35

after 0
texts

after 1
text

after 2
texts

after 3
texts

after 4
texts

after 5
texts

after 6
texts

Number of texts

P
er

ce
nt

ag
e

co
rr

ec
t

Series1

25% Threshold

Demo B Q-A Results

Figure 12: End-to-end system performance on demo B data.

Unfortunately, the demo A system was unable to answer the demo B questions, so we
were not able to conduct a direct comparison of the scores for this data. We were,
however, able to compare the results of the demo A and demo B systems on the demo A
data. Figure 13, below depicts the results obtained on the three demo A engine topics.
Build 694 is the demo A build system, while build 1020 is the demo B build system. Note
the significant improvement achieved by the demo B system, particularly as more texts
are read. There is an anomaly in the 2-Stroke topic, as the original demo A scores after
reading 2 texts contained a scoring error, where the system was awarded a point for a
spurious response. This scoring error was avoided in Demo B, which explains why the
demo A system scored better that the demo B system for this data point.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 22

Comparative Demo A-B Performance on Demo A Data

0
5

10
15
20
25
30

be
for

e
1te

xt
2te

xt
3te

xt
4te

xt
5te

xt

Number of texts

Pe
rc

en
t C

or
re

ct

2Stroke-694
2stroke-1020

0

5

10

15

20

25

30

before 1text 2text 3text 4text 5text

Number of Texts

Pe
rc

en
t C

or
re

ct

PDE-694
PDE-1020

0

10

20

30

40

50

be
for

e
1te

xt
2te

xt
3te

xt
4te

xt
5te

xt

Number of Texts

Pe
rc

en
t C

or
re

ct

Sturbine-694
Sturbine-1020

Comparing STurbine

Comparing 2Stroke Comparing PDE

Figure 13: Comparison of demo A and demo B systems on demo A data.

A small experiment was also conducted to measure the impact of targeted reading (TR)
on the end-to-end question-answering performance. The experiment was run on text 1 of
the demo B data set. The correct scores went from 37/321 without TR, to 43/321 with TR
– an increase of 16%. An example of one of the questions impacted by this experiment is
depicted in Figure 14, below. Note the “TR” provenance of the answer axioms on the
right, compared to the left, where no TR has taken place. TR allowed the system to pick
up another point (2/9) over the non-TR run on text1 (1/9), at the expense of producing a
lot more axioms pairs in the answer – some of which were irrelevant, like the Steam-
Engine components. TR, in its current incarnation, appears to increase the score (recall)
but has a negative impact on precision. This is still an open issue that will need to be
tackled in future research.

The demo B experiments also included some very preliminary work on knowledge
integration (KI). As this technology did not impact the question-answering performance
of the system, we cannot report on its impact on the overall scoring. Thus, we will leave
the reporting of the progress and impact of KI to a future publication.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 23

TR Analysis, build 1020, demo B Text1

Engine1: (English) What are the parts of an engine?
Engine1:(CPL) What are the parts of an engine
Engine1:(Gold answer): Cooling system, fuel system, exhaust system, lubrication
system, piston, bearing, muffler, and cylinder.

TR=off 1/9 TR=on 2/9

engine :: has-part = PISTON.[1.1]
PISTON :: is-part-of = engine.[1.1]

engine :: has-part = PISTON.[1.1]
PISTON :: is-part-of = engine.[1.1]
CYLINDER :: is-part-of = engine.[TR]
engine :: has-part = CYLINDER.[TR]
PISTON :: is-part-of = engine.[TR]
engine :: has-part = PISTON.[TR]
CYLINDER :: is-part-of = steam-engine.[TR]
steam-engine :: has-part = CYLINDER.[TR]
entity :: is-part-of = tangible-entity(FUEL).[TR]

TR=on for text1 resulted in a 16% improvement in the adjusted Q-A score

Figure 14: End-to-end TR results on demo B text 1.

Year 2 Failure Analysis
The demo B system produced significantly better results that the demo A system. The
Möbius team wanted to investigate the reasons for this improvement. This was
accomplished by a detailed, comparative failure analysis between both builds. The
analysis involved a painstaking examination of the system and sub-component behaviors
of the demo A and demo B systems on select subsets of the demo A and demo B data.
The effort represented approximately one week of engineering effort for each of the two
main Möbius modules – the NL pipeline and the KR components.

The analysis broke down into two parts: NL and KR. The NL analysis, depicted in Figure
15, below, tabulated all the serious errors – ones that downgraded the system’s overall
performance. Next, the errors were categorized into three classes. Red errors represent
errors that stem from significant research challenges – ones that may take years and
entirely new approaches to resolve. Note that these results were produced on simplified
texts, so the list of observed failures will be somewhat abridged, compared to errors that
may arise when confronting more complex texts. The two red types listed in this analysis
are prepositional phrase attachment and parse errors. Clearly given more complex
sentences, the number and types of red errors would have increased. The green errors are
errors that can easily be fixed with a few months of engineering effort. Most of these
errors pertain to the mechanical process of how NL triples are formed in the pipeline.
Yellow errors lie somewhere in between the red and green types. The left hand chart
shows the serious errors produced by examining all the demo B data on the demo B
system. The three main causes of error were: Prepositional attachment (red); missing
arguments in the rules supporting tree binarization or logical form creation (yellow); and
NL triple generation errors (green), which is the last step in the NL pipeline, before
Semantic Elaboration transforms NL triples to KR triples. The right hand chart in Figure
15, depicts a comparative analysis of the demo A (build 694) and demo B (build 1020)
system on text2 of the demo B data set. Note the significant difference in the number of
serious errors. The demo A system produced a total of 349 serious errors, while the demo

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 24

B system produced only 22. The largest decrease in serious errors was in the green
category – specifically, NL triple formulation errors. Their “green” designation marks
their relative ease of repair, and the months between the demos included many of the
needed repairs. The demo B system also had significantly less red parse errors, partially
because the demo B system employed the BBN SERIF parser which had been trained
with a sprinkling of engine domain example sentences, to address domain specific
compound nouns, e.g. “Spark Plug”, added to the Wall Street Journal training trees, while
the demo A system was scored using Brown University’s Charniak Parser, which had not
been trained with any engine data.

NL Error Analysis

Comparing 694 vs 1020 on demo B, Text2

Text2 errors: build 694 – 349; build 1020 – 22

0
50

100
150
200
250

pr
ep

os
iti

on

pa
rs

e

ar
gu

m
en

t
pr

ep
os

iti
on

co
m

p
pr

ep

pr
ed

ic
at

e

no
un

pa
rs

e
m

in
or

 a
rg

ax
io

m

tri
pl

es
 g

en

R R Y Y Y Y Y Y G G G

Error Types

N
um

be
r o

f I
nc

id
en

ts

t2 694
t2 1020

Total errors: build 1020 - 67

Build 1020, all demo B texts

0
5

10
15
20
25

pr
ep

os
iti

on

pa
rs

e

ar
gu

m
en

t

pr
ep

os
iti

on

co
m

p
pr

ep

pr
ed

ic
at

e

no
un

pa
rs

e

mi
no

r a
rg

ax
io

m

tri
pl

es
 g

en

R R Y Y Y Y Y Y G G G

Error Types

N
um

be
r o

f I
nc

id
en

ts

Figure 15: NL Error Analysis

Figure 16 depicts the KR and Q-A components failure analysis. The graph on the upper
left hand corner depicts a comparative analysis of KR triples produced by the demo A
(build 694) and demo B (build 1020) systems on text 5 of the demo B data set. The
counts represent the number of “good”, “bad”, “spurious” and “missing” KR triples.
“Good” triples are appropriate, given the text data. “Bad” triples are not. “Spurious”
triples have nothing to do with the sentence, and “Missing” triples are triples that should
have been produced, but for some reason were not. The head-on comparison between the
builds yields the following facts: (i) the demo B system produced 48% more triples than
the demo A system on the same text, and (ii) the demo B system produced 62% more
“Good” triples than the demo A system.

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 25

The upper right hand chart in Figure 16 depicts the KR error counts and categories for the
demo B system on demo B texts 4, 5, and 6. The leading cause of KR errors are bad
Word-to-Concept mappings (i.e., bad word sense disambiguation). These mappings form
the core of the interpretation process between NL and KR triples in the Semantic
Elaboration module. These errors have been classified by the University of Texas
researchers as Red-Yellow in difficulty. The next major source of KR error is Noun
Phrase Semantics. This has to do with how the system handles compound noun phrases,
for example, the mishandling of “Spark Plug” or “Internal Combustion Engine”. These
errors were labeled red. The third largest source of KR system errors are produced by the
NL subsystem, and are then propagated into the KR subsystem.

The lower right hand chart in Figure 16 depicts a comparative analysis of KR errors
between the demo B (build 1020) and demo A (build 694) systems, on demo text 5 data.
Note the significant decrease in NL-related errors, which have been reduced by over 50%
in the demo B system. The demo B system does experience more errors in the NP
category, because the demo B NL pipeline was instrumented to recover more noun
phrases than the demo A system.

The final chart on Figure 16, on the lower left hand side, is an analysis of question-
answering failures on the demo B system (Build 1020) for all 127 questions. NL and KR
errors account for 162 points lost out of a total 321 points. The Q-A system itself is
responsible for a loss of 37 points out of 321. Bad CPL encodings are responsible for a
loss of 11 points, and incomplete gold standard keyword allocation is responsible for 7
points lost from a total of 321. Thus, the overall points lost for non-NL/KR errors stands
at 55, which results in a Q/A recall score of up to 65.4%.

KR/Q-A Error Analysis

694

169
96
50
20

265

0

50

100

150

200

250

300

Good Bad Missing Spurious

Triple Type

Co
un

t 1020
694

0

50

100

150

200

250

300

Good Bad Missing Spurious

Triple Type

Co
un

t 1020
694

Comparison: KR Triple Count, builds 1020, 694, Text5

0

50

100

150

200

250

300

Good Bad Missing Spurious

Triple Type

C
ou

nt 1020
694

0
10
20
30
40
50
60
70
80

N
L

Is
su

es

W
-2

-C

N
P

S
em

an
tic

s

S
em

an
tic

R
ol

es

P
ro

pe
rti

es

R/Y R R Y

Error Type

Incidents

Serious Errors: Build 1020, demo B Texts 4, 5, 6

Comparing Build 1020 and Build 694, demo B text 5

0
5

10
15
20
25
30
35
40
45

N
L

Is
su

es

W
-2

-C

N
P

S
em

an
tic

s

S
em

an
tic

R
ol

es

P
ro

pe
rti

es

R/Y R R Y

Error Type

t5-1020
t5- 694

Q-A Error Analysis Build 1020, demo B

Failure Type Count
NL/KR 162

QA 37
CPL 11
Keywords 7

Figure 16: KR and Q-A Error Analysis

Distribution Statement A: Approved for Public Release; distribution is unlimited. DISTAR Case # 11669

 26

Summary and Conclusions
The goal of the two year Möbius project was to ascertain the feasibility of learning by
reading. The Year 1 effort established qualitative evidence that a demo system could be
assembled that would be capable of extracting logical form from text and placing that
data into an existing knowledge base. The Year 2 effort produced quantitative evidence
that a software system could be built that was capable of learning from text and that the
knowledge learned could be demonstrably applied to an objective task: question-
answering. In fact, the more the system read, the better it was able to perform on the Q-A
tasks.

Also importantly, the study demonstrated the potential of the high-level architecture –
one that leverages techniques and technologies in three major discipline areas in
computer science: Knowledge Representation and Reasoning (KR&R), Natural Language
Understanding (NLU) and Machine Learning (ML). Most of the focus centered on the
acquisition loop of the Möbius notional architecture. More effort will be needed to create
the capabilities needed to support the consolidation loop, which will be critical in
producing correct, high performance knowledge.

The feasibility study also exposed some of the primary challenges facing LbR research:

1. Bridging the NL-KR gap: harvesting high quality KR triples from text. It will be
important to expand the ability to harvest logical form from increasingly complex
texts.

2. Building Robust Knowledge Models: using KR triples to incrementally construct
robust models of knowledge that can support high-performance inference. The
challenge will be to construct these robust models from “noisy” logical form
acquired automatically form text. Machine learning techniques may be helpful in
eliminating some of this noise.

3. Problem-Solving in Text-Derived Knowledge: creating problem-solving and
question-answering (Q-A) methodologies to support evaluation and introspection
of the system’s knowledge. Scaling problem solving techniques to large,
automatically created knowledge bases, will require new approaches to isolate a
few relevant assertions from thousands or tens of thousands of irrelevant ones.

The authors are confident that significant progress can be achieved in these challenge
areas in the immediate future.

		2008-06-18T11:25:33-0400
	ADAMS.DANIEL.R.1271779760

